Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Sleep ; 47(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38227834

RESUMO

Narcolepsy type 1 (NT1), characterized by the loss of hypocretin/orexin (HCRT) production in the lateral hypothalamus, has been linked to Pandemrix vaccination during the 2009 H1N1 pandemic, especially in children and adolescents. It is still unknown why this vaccination increased the risk of developing NT1. This study investigated the effects of Pandemrix vaccination during adolescence on Hcrt mRNA expression in mice. Mice received a primary vaccination (50 µL i.m.) during prepubescence and a booster vaccination during peri-adolescence. Hcrt expression was measured at three-time points after the vaccinations. Control groups included both a saline group and an undisturbed group of mice. Hcrt expression was decreased after both Pandemrix and saline injections, but 21 days after the second injection, the saline group no longer showed decreased Hcrt expression, while the Pandemrix group still exhibited a significant reduction of about 60% compared to the undisturbed control group. This finding suggests that Pandemrix vaccination during adolescence influences Hcrt expression in mice into early adulthood. The Hcrt mRNA level did not reach the low levels known to induce NT1 symptoms, instead, our finding supports the multiple-hit hypothesis of NT1 that states that several insults to the HCRT system may be needed to induce NT1 and that Pandemrix could be one such insult.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Narcolepsia , Orexinas , Animais , Camundongos , Regulação para Baixo , Vacinas contra Influenza/efeitos adversos , Narcolepsia/etiologia , Orexinas/genética , Orexinas/metabolismo , RNA Mensageiro , Vacinação/efeitos adversos
2.
Nat Rev Immunol ; 24(1): 33-48, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37400646

RESUMO

Narcolepsy type 1 (NT1) is a chronic sleep disorder resulting from the loss of a small population of hypothalamic neurons that produce wake-promoting hypocretin (HCRT; also known as orexin) peptides. An immune-mediated pathology for NT1 has long been suspected given its exceptionally tight association with the MHC class II allele HLA-DQB1*06:02, as well as recent genetic evidence showing associations with polymorphisms of T cell receptor genes and other immune-relevant loci and the increased incidence of NT1 that has been observed after vaccination with the influenza vaccine Pandemrix. The search for both self-antigens and foreign antigens recognized by the pathogenic T cell response in NT1 is ongoing. Increased T cell reactivity against HCRT has been consistently reported in patients with NT1, but data demonstrating a primary role for T cells in neuronal destruction are currently lacking. Animal models are providing clues regarding the roles of autoreactive CD4+ and CD8+ T cells in the disease. Elucidation of the pathogenesis of NT1 will allow for the development of targeted immunotherapies at disease onset and could serve as a model for other immune-mediated neurological diseases.


Assuntos
Linfócitos T CD8-Positivos , Narcolepsia , Animais , Humanos , Narcolepsia/genética , Alelos
3.
ACS Pharmacol Transl Sci ; 6(10): 1492-1507, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854625

RESUMO

Quality of life is often reduced in patients with sleep-wake disorders. Insomnia is commonly treated with benzodiazepines, despite their well-known side effects. Pellotine (1), a Lophophora alkaloid, has been reported to have short-acting sleep-inducing properties in humans. In this study, we set out to evaluate various in vitro and in vivo properties of 1. We demonstrate that 1 undergoes slow metabolism; e.g. in mouse liver microsomes 65% remained, and in human liver microsomes virtually no metabolism was observed after 4 h. In mouse liver microsomes, two phase I metabolites were identified: 7-desmethylpellotine and pellotine-N-oxide. In mice, the two diastereomers of pellotine-O-glucuronide were additionally identified as phase II metabolites. Furthermore, we demonstrated by DESI-MSI that 1 readily enters the central nervous system of rodents. Furthermore, radioligand-displacement assays showed that 1 is selective for the serotonergic system and in particular the serotonin (5-HT)1D, 5-HT6, and 5-HT7 receptors, where it binds with affinities in the nanomolar range (117, 170, and 394 nM, respectively). Additionally, 1 was functionally characterized at 5-HT6 and 5-HT7, where it was found to be an agonist at the former (EC50 = 94 nM, Emax = 32%) and an inverse agonist at the latter (EC50 = 291 nM, Emax = -98.6). Finally, we demonstrated that 1 dose-dependently decreases locomotion in mice, inhibits REM sleep, and promotes sleep fragmentation. Thus, we suggest that pellotine itself, and not an active metabolite, is responsible for the hypnotic effects and that these effects are possibly mediated through modulation of serotonergic receptors.

4.
Eur J Neurosci ; 58(9): 4002-4010, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37818927

RESUMO

Recent studies have focused on how sickness behaviours, including lethargy, are coordinated in the brain in response to peripheral infections. Decreased hypocretin (orexin) signalling is associated with lethargy and previous research suggests that hypocretin signalling is downregulated during sickness. However, there are studies that find increases or no change in hypocretin signalling during sickness. It is further unknown whether hypocretin receptor expression changes during sickness. Using lipopolysaccharide (LPS) to induce sickness in female mice, we investigated how LPS-injection affects gene expression of hypocretin receptors and prepro-hypocretin as well as hypocretin-1 peptide concentrations in brain tissue. We found that hypocretin receptor 1 gene expression was downregulated during sickness in the lateral hypothalamus and ventral tegmental area, but not in the dorsal raphe nucleus or locus coeruleus. We found no changes in hypocretin receptor 2 expression. Using a gene expression calculation that accounts for primer efficiencies and multiple endogenous controls, we were unable to detect changes in prepro-hypocretin expression. Using radioimmunoassay, we found no change in hypocretin-1 peptide in rostral brain tissue. Our results indicate that hypocretin receptor expression can fluctuate during sickness, adding an additional level of complexity to understanding hypocretin signalling during sickness.


Assuntos
Região Hipotalâmica Lateral , Neuropeptídeos , Camundongos , Feminino , Animais , Orexinas/metabolismo , Região Hipotalâmica Lateral/metabolismo , Receptores de Orexina/metabolismo , Neuropeptídeos/metabolismo , Área Tegmentar Ventral/metabolismo , Letargia/metabolismo , Lipopolissacarídeos/metabolismo , Hipotálamo/metabolismo
5.
Elife ; 122023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698546

RESUMO

Infection with Influenza A virus (IAV) causes the well-known symptoms of the flu, including fever, loss of appetite, and excessive sleepiness. These responses, mediated by the brain, will normally disappear once the virus is cleared from the system, but a severe respiratory virus infection may cause long-lasting neurological disturbances. These include encephalitis lethargica and narcolepsy. The mechanisms behind such long lasting changes are unknown. The hypothalamus is a central regulator of the homeostatic response during a viral challenge. To gain insight into the neuronal and non-neuronal molecular changes during an IAV infection, we intranasally infected mice with an H1N1 virus and extracted the brain at different time points. Using single-nucleus RNA sequencing (snRNA-seq) of the hypothalamus, we identify transcriptional effects in all identified cell populations. The snRNA-seq data showed the most pronounced transcriptional response at 3 days past infection, with a strong downregulation of genes across all cell types. General immune processes were mainly impacted in microglia, the brain resident immune cells, where we found increased numbers of cells expressing pro-inflammatory gene networks. In addition, we found that most neuronal cell populations downregulated genes contributing to the energy homeostasis in mitochondria and protein translation in the cytosol, indicating potential reduced cellular and neuronal activity. This might be a preventive mechanism in neuronal cells to avoid intracellular viral replication and attack by phagocytosing cells. The change of microglia gene activity suggest that this is complemented by a shift in microglia activity to provide increased surveillance of their surroundings.


When you are ill, your behaviour changes. You sleep more, eat less and are less likely to go out and be active. This behavioural change is called the 'sickness response' and is believed to help the immune system fight infection. An area of the brain called the hypothalamus helps to regulate sleep and appetite. Previous research has shown that when humans are ill, the immune system sends signals to the hypothalamus, likely initiating the sickness response. However, it was not clear which brain cells in the hypothalamus are involved in the response and how long after infection the brain returns to its normal state. To better understand the sickness response, Lemcke et al. infected mice with influenza then extracted and analysed brain tissue at different timepoints. The experiments showed that the major changes to gene expression in the hypothalamus early during an influenza infection are not happening in neurons ­ the cells in the brain that transmit electrical signals and usually control behaviour. Instead, it is cells called glia ­ which provide support and immune protection to the neurons ­ that change during infection. The findings suggest that these cells prepare to protect the neurons from influenza should the virus enter the brain. Lemcke et al. also found that the brain takes a long time to go back to normal after an influenza infection. In infected mice, molecular changes in brain cells could be detected even after the influenza infection had been cleared from the respiratory system. In the future, these findings may help to explain why some people take longer than others to fully recover from viral infections such as influenza and aid development of medications that speed up recovery.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Animais , Camundongos , Humanos , Hipotálamo , Núcleo Solitário , Apetite
6.
Sleep Med ; 110: 91-98, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37544279

RESUMO

BACKGROUND: The diagnosis of narcolepsy is based on clinical information, combined with polysomnography (PSG) and the Multiple Sleep Latency Test (MSLT). PSG and the MSLT are moderately reliable at diagnosing narcolepsy type 1 (NT1) but unreliable for diagnosing narcolepsy type 2 (NT2). This is a problem, especially given the increased risk of a false-positive MSLT in the context of circadian misalignment or sleep deprivation, both of which commonly occur in the general population. AIM: We aimed to clarify the accuracy of PSG/MSLT testing in diagnosing NT1 versus controls without sleep disorders. Repeatability and reliability of PSG/MSLT testing and temporal changes in clinical findings of patients with NT1 versus patients with hypersomnolence with normal hypocretin-1 were compared. METHOD: 84 patients with NT1 and 100 patients with non-NT1-hypersomnolence disorders, all with congruent cerebrospinal fluid hypocretin-1 (CSF-hcrt-1) levels, were included. Twenty-five of the 84 NT1 patients and all the hypersomnolence disorder patients underwent a follow-up evaluation consisting of clinical assessment, PSG, and a modified MSLT. An additional 68 controls with no sleep disorders were assessed at baseline. CONCLUSION: Confirming results from previous studies, we found that PSG and our modified MSLT accurately and reliably diagnosed hypocretin-deficient NT1 (accuracy = 0.88, reliability = 0.80). Patients with NT1 had stable clinical and electrophysiological presentations over time that suggested a stable phenotype. In contrast, the PSG/MSLT results of patients with hypersomnolence, and normal CSF-hcrt-1 had poor reliability (0.32) and low repeatability.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Narcolepsia , Humanos , Polissonografia/métodos , Orexinas , Latência do Sono/fisiologia , Reprodutibilidade dos Testes , Narcolepsia/diagnóstico , Narcolepsia/líquido cefalorraquidiano , Distúrbios do Sono por Sonolência Excessiva/diagnóstico
7.
Sleep ; 46(9)2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37210587

RESUMO

Narcolepsy type 1 (NT1) is a neurological disorder caused by disruption of hypocretin (HCRT; or orexin) neurotransmission leading to fragmented sleep/wake states, excessive daytime sleepiness, and cataplexy (abrupt muscle atonia during wakefulness). Electroencephalography and electromyography (EEG/EMG) monitoring is the gold standard to assess NT1 phenotypical features in both humans and mice. Here, we evaluated the digital ventilated home-cage (DVC®) activity system as an alternative to detect NT1 features in two NT1 mouse models: the genetic HCRT-knockout (-KO) model, and the inducible HCRT neuron-ablation hcrt-tTA;TetO-DTA (DTA) model, including both sexes. NT1 mice exhibited an altered dark phase activity profile and increased state transitions, compared to the wild-type (WT) phenotype. An inability to sustain activity periods >40 min represented a robust activity-based NT1 biomarker. These features were observable within the first weeks of HCRT neuron degeneration in DTA mice. We also created a nest-identification algorithm to differentiate between inactivity and activity, inside and outside the nest as a sleep and wake proxy, respectively, showing significant correlations with EEG/EMG-assessed sleep/wake behavior. Lastly, we tested the sensitivity of the activity system to detect behavioral changes in response to interventions such as repeated saline injection and chocolate. Surprisingly, daily consecutive saline injections significantly reduced activity and increased nest time of HCRT-WT mice. Chocolate increased total activity in all mice, and increased the frequency of short out-of-nest inactivity episodes in HCRT-KO mice. We conclude that the DVC® system provides a useful tool for non-invasive monitoring of NT1 phenotypical features, and has the potential to monitor drug effects in NT1 mice.


Assuntos
Narcolepsia , Neuropeptídeos , Humanos , Masculino , Feminino , Camundongos , Animais , Orexinas/farmacologia , Neuropeptídeos/genética , Narcolepsia/diagnóstico , Narcolepsia/genética , Sono/fisiologia , Vigília/fisiologia , Progressão da Doença
8.
Sleep Med ; 101: 213-220, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427467

RESUMO

STUDY OBJECTIVES: The assay currently used worldwide to measure cerebrospinal fluid hypocretin-1 (CSF-hcrt-1) for diagnosing narcolepsy uses a competitive radioimmunoassay with polyclonal anti-hcrt-1 antibodies. This assay detects multiple hypocretin-1 immunoreactive species in the CSF that are all derived from full-length hcrt-1. We aimed to revalidate CSF-hcrt-1 cut-offs for narcolepsy type 1 (NT1) diagnosis and to evaluate temporal changes in CSF-hcrt-1 levels in patients suspected of having central hypersomnia. METHOD: We carried out a repeat lumbar puncture with a mean follow-up of 4.0 years, to measure CSF-hcrt-1 in patients suspected of having central hypersomnia in a follow-up study. Data from CSF samples of patients with NT1 and of controls without known hypersomnia, from the Italian-Stanford and Danish populations, were examined using a receiver-operating characteristic analysis. RESULTS: The optimal CSF-hcrt-1 cut-offs for identifying NT1 were 129 pg/ml and 179 pg/ml for the Italian-Stanford and Danish populations, respectively. The sensitivity was 0.93-0.99 and the specificity was 1. Follow-up lumbar puncture measurements of CSF-hcrt-1 were obtained from 73 patients. 30 of 32 patients with low CSF-hcrt-1 levels continued to be categorized as low, with an unaltered diagnosis; two patients showed a marked increase in CSF-hcrt-1, attaining normal values at follow-up. One of these patients relapsed to low CSF-hcrt-1 after follow-up. All 41 patients with normal CSF-hcrt-1 at baseline had normal CSF-hcrt-1 at follow-up. CONCLUSION: CSF-hcrt-1 measurement can provide an accurate test for diagnosing NT1, although it is important to validate the CSF-hcrt-1 cut-off for specific testing locations. Stable CSF-hcrt-1 levels support the already established prognosis of narcolepsy as permanent once the disorder has fully developed.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Narcolepsia , Humanos , Orexinas , Seguimentos , Narcolepsia/diagnóstico , Narcolepsia/líquido cefalorraquidiano , Distúrbios do Sono por Sonolência Excessiva/diagnóstico , Dinamarca
9.
Trends Mol Med ; 29(1): 61-69, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36400667

RESUMO

Excessive daytime sleepiness (EDS) is a complex symptom characterized by a strong urge to sleep during daytime accompanied by problems such as attention deficits, anxiety, and lower cognitive performance. The efficacy of treatments for EDS is determined by their ability to decrease sleepiness, and less attention has been given to the effects these compounds have on the quality of the wake itself. Hypocretin (HCRT; orexin) signalling is implicated in narcolepsy, and hypocretin receptor 2 (HCRTR2) agonists are in clinical trials for treating EDS in narcolepsy. Here, we review preclinical research to determine how HCRTR2 agonists may affect attention and anxiety compared with other EDS treatment strategies. We conclude that such compounds may improve not only the quantity but also the quality of wake, and we hope that they will create opportunities for more nuanced treatment strategies in narcolepsy.


Assuntos
Narcolepsia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Narcolepsia/diagnóstico , Narcolepsia/tratamento farmacológico , Narcolepsia/genética , Neuropeptídeos/uso terapêutico , Receptores de Orexina/uso terapêutico , Orexinas/genética
10.
Sleep ; 46(3)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36562330

RESUMO

STUDY OBJECTIVES: Narcolepsy type 1 (NT1) is characterized by unstable sleep-wake and muscle tonus regulation during sleep. We characterized dream enactment and muscle activity during sleep in a cohort of post-H1N1 NT1 patients and their siblings, and analyzed whether clinical phenotypic characteristics and major risk factors are associated with increased muscle activity. METHODS: RBD symptoms and polysomnography m. tibialis anterior electromyographical signals [long (0.5-15 s); short (0.1-0.49 s)] were compared between 114 post-H1N1 NT1 patients and 89 non-narcoleptic siblings. Association sub-analyses with RBD symptoms, narcoleptic symptoms, CSF hypocretin-1 levels, and major risk factors [H1N1-(Pandemrix)-vaccination, HLA-DQB1*06:02-positivity] were performed. RESULTS: RBD symptoms, REM and NREM long muscle activity indices and REM short muscle activity index were significantly higher in NT1 patients than siblings (all p < 0.001). Patients with undetectable CSF hypocretin-1 levels (<40 pg/ml) had significantly more NREM periodic long muscle activity than patients with low but detectable levels (40-150 pg/ml) (p = 0.047). In siblings, REM and NREM sleep muscle activity indices were not associated with RBD symptoms, other narcolepsy symptoms, or HLA-DQB1*06:02-positivity. H1N1-(Pandemrix)-vaccination status did not predict muscle activity indices in patients or siblings. CONCLUSION: Increased REM and NREM muscle activity and more RBD symptoms is characteristic of NT1, and muscle activity severity is predicted by hypocretin deficiency severity but not by H1N1-(Pandemrix)-vaccination status. In the patients' non-narcoleptic siblings, neither RBD symptoms, core narcoleptic symptoms, nor the major NT1 risk factors is associated with muscle activity during sleep, hence not indicative of a phenotypic continuum.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Narcolepsia , Humanos , Orexinas , Irmãos , Narcolepsia/etiologia , Narcolepsia/diagnóstico , Sono , Músculo Esquelético
11.
Front Cell Dev Biol ; 10: 976549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046338

RESUMO

Stellate cells are principal neurons in the entorhinal cortex that contribute to spatial processing. They also play a role in the context of Alzheimer's disease as they accumulate Amyloid beta early in the disease. Producing human stellate cells from pluripotent stem cells would allow researchers to study early mechanisms of Alzheimer's disease, however, no protocols currently exist for producing such cells. In order to develop novel stem cell protocols, we characterize at high resolution the development of the porcine medial entorhinal cortex by tracing neuronal and glial subtypes from mid-gestation to the adult brain to identify the transcriptomic profile of progenitor and adult stellate cells. Importantly, we could confirm the robustness of our data by extracting developmental factors from the identified intermediate stellate cell cluster and implemented these factors to generate putative intermediate stellate cells from human induced pluripotent stem cells. Six transcription factors identified from the stellate cell cluster including RUNX1T1, SOX5, FOXP1, MEF2C, TCF4, EYA2 were overexpressed using a forward programming approach to produce neurons expressing a unique combination of RELN, SATB2, LEF1 and BCL11B observed in stellate cells. Further analyses of the individual transcription factors led to the discovery that FOXP1 is critical in the reprogramming process and omission of RUNX1T1 and EYA2 enhances neuron conversion. Our findings contribute not only to the profiling of cell types within the developing and adult brain's medial entorhinal cortex but also provides proof-of-concept for using scRNAseq data to produce entorhinal intermediate stellate cells from human pluripotent stem cells in-vitro.

12.
Proc Natl Acad Sci U S A ; 119(17): e2112225119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35452310

RESUMO

Hypocretin (Hcrt), also known as orexin, neuropeptide signaling stabilizes sleep and wakefulness in all vertebrates. A lack of Hcrt causes the sleep disorder narcolepsy, and increased Hcrt signaling has been speculated to cause insomnia, but while the signaling pathways of Hcrt are relatively well-described, the intracellular mechanisms that regulate its expression remain unclear. Here, we tested the role of microRNAs (miRNAs) in regulating Hcrt expression. We found that miR-137, miR-637, and miR-654-5p target the human HCRT gene. miR-137 is evolutionarily conserved and also targets mouse Hcrt as does miR-665. Inhibition of miR-137 specifically in Hcrt neurons resulted in Hcrt upregulation, longer episodes of wakefulness, and significantly longer wake bouts in the first 4 h of the active phase. IL-13 stimulation upregulated endogenous miR-137, while Hcrt mRNA decreased both in vitro and in vivo. Furthermore, knockdown of miR-137 in zebrafish substantially increased wakefulness. Finally, we show that in humans, the MIR137 locus is genetically associated with sleep duration. In conclusion, these results show that an evolutionarily conserved miR-137:Hcrt interaction is involved in sleep­wake regulation.


Assuntos
MicroRNAs , Neuropeptídeos , Animais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , MicroRNAs/genética , Neuropeptídeos/metabolismo , Orexinas/genética , Orexinas/metabolismo , Sono/genética , Vigília/genética , Peixe-Zebra/metabolismo
13.
Sleep ; 45(7)2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35266540

RESUMO

Narcolepsy type 1 (NT1) is a sleep-wake disorder caused by selective loss of hypocretin (HCRT, also called orexin) neurons. Although the prevalence of NT1 is equal in men and women, sex differences in NT1 symptomatology have been reported in humans and other species. Yet, most preclinical studies fail to include females, resulting in gender bias within translational drug development. We used hcrt-tTA;TetO DTA mice (NT1 mice) that lose their HCRT neurons upon dietary doxycycline removal to examine in detail the effect of sex on NT1 symptoms and sleep-wake characteristics. We recorded 24-h electroencephalography (EEG), electromyography (EMG), and video in adult male and female NT1 mice for behavioral state quantification. While conducting this study, we recognized another type of behavioral arrest different from cataplexy: shorter lasting and with high δ power. We termed these delta attacks and propose a set of criteria for quantifying these in future research. Our findings show that both sexes exhibit high behavioral state instability, which was markedly higher in females with more behavioral arrests interrupting the wake episodes. Females exhibited increased wake at the expense of sleep during the dark phase, and decreased rapid eye movement (REM) sleep during the 24-h day. During the dark phase, fast-δ (2.5-4 Hz) in non-rapid eye movement (NREM) sleep and θ (6-10 Hz) EEG spectral power in REM sleep were lower in females compared to males. We demonstrate that biologically driven sex-related differences exist in the symptomatology of NT1 mice which calls for including both sexes in future research.


Assuntos
Cataplexia , Narcolepsia , Neuropeptídeos , Animais , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Masculino , Camundongos , Neuropeptídeos/farmacologia , Orexinas/farmacologia , Caracteres Sexuais , Sexismo , Sono , Vigília/fisiologia
14.
Sleep Med ; 85: 271-279, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34388506

RESUMO

STUDY OBJECTIVES: Evidence suggests a cell-mediated autoimmune pathogenesis for narcolepsy type 1 (NT1), but it is not clear whether the disease is associated with overall changes in T cell subsets. The increase in NT1 incidence after H1N1 vaccination campaign with the Pandemrix™ vaccine suggests that disease-relevant changes in the immune system following this vaccination were important. In this study, we aimed to investigate differentiated T cell subsets and levels of CD25 and CD69 activation markers in a cohort of mainly Pandemrix™-vaccinated NT1 patients compared with their vaccinated and unvaccinated siblings. METHODS: Peripheral blood mononuclear cells were collected in parallel and analysed with flow cytometry in 31 NT1 patients with disease onset after the 2009 influenza A (H1N1) pandemic and/or Pandemrix™ vaccination and 45 of their non-narcoleptic siblings (29/31 and 34/45 vaccinated, respectively). RESULTS: We observed significantly lower effector memory CD4+ T cell levels in NT1 patients compared to their siblings, when controlling for HLA DQB1∗06:02 and vaccination status. Further, within the sibling group, vaccination status significantly affected frequencies of central memory and CD8+CD25+ T cells, and HLA DQB1∗06:02 status significantly affected frequencies of CD4+CD25+ T cells. CONCLUSION: We confirm that NT1 is associated with lower levels of effector memory CD4+ T cells in peripheral blood. Importantly, this finding was only significant when controlling for vaccination and HLA status in both patients and controls. We thus demonstrate the importance of characterizing such factors (eg HLA and vaccination) when studying T cell subsets in NT1. This might explain earlier conflicting results.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Narcolepsia , Linfócitos T CD4-Positivos , Cadeias beta de HLA-DQ , Humanos , Influenza Humana/prevenção & controle , Leucócitos Mononucleares , Irmãos , Vacinação
15.
Expert Opin Ther Targets ; 25(7): 559-572, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34402358

RESUMO

INTRODUCTION: Narcolepsy type 1 (NT1) and type 2 (NT2) are chronic sleep disorders primarily characterized by excessive daytime sleepiness (EDS), disturbed sleep-wake regulation, and reduced quality of life. The precise disease mechanism is unclear, but it is certain that in NT1 the hypocretin/orexin (Hcrt) system is affected. Current treatment options are symptomatic - they improve EDS and/or reduce cataplexy. Complete symptom control is relatively rare - particularly problematic is residual daytime sleepiness. AREAS COVERED: This review discusses various emerging treatment targets for narcolepsy. The focus is on the Hcrt receptors but included are also wake-promoting pathways, and sleep-stabilization through GABAergic mechanisms. Additionally, we discuss the potential of targeting the likely autoimmune basis of narcolepsy. PubMed and ClinicalTrials.gov was searched through June 2021 for relevant information. EXPERT OPINION: Targeting Hcrt receptors has the potential to alleviate narcolepsy symptoms. Results from ongoing drug development programs are promising, but care needs to be taken when evaluating potential side effects. It is still largely unknown what roles Hcrt receptors play in the periphery and how these might be affected by treatment. Immunotherapies could potentially target the core pathophysiology of narcolepsy, but more work is needed to identify the best therapeutic target for this approach.

16.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34330837

RESUMO

Ca2+/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) is a key neuronal signaling protein and an emerging drug target. The central hub domain regulates the activity of CaMKIIα by organizing the holoenzyme complex into functional oligomers, yet pharmacological modulation of the hub domain has never been demonstrated. Here, using a combination of photoaffinity labeling and chemical proteomics, we show that compounds related to the natural substance γ-hydroxybutyrate (GHB) bind selectively to CaMKIIα. By means of a 2.2-Å x-ray crystal structure of ligand-bound CaMKIIα hub, we reveal the molecular details of the binding site deep within the hub. Furthermore, we show that binding of GHB and related analogs to this site promotes concentration-dependent increases in hub thermal stability believed to alter holoenzyme functionality. Selectively under states of pathological CaMKIIα activation, hub ligands provide a significant and sustained neuroprotection, which is both time and dose dependent. This is demonstrated in neurons exposed to excitotoxicity and in a mouse model of cerebral ischemia with the selective GHB analog, HOCPCA (3-hydroxycyclopent-1-enecarboxylic acid). Together, our results indicate a hitherto unknown mechanism for neuroprotection by a highly specific and unforeseen interaction between the CaMKIIα hub domain and small molecule brain-penetrant GHB analogs. This establishes GHB analogs as powerful tools for investigating CaMKII neuropharmacology in general and as potential therapeutic compounds for cerebral ischemia in particular.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Oxibato de Sódio/metabolismo , Sítios de Ligação , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Ácidos Carboxílicos/farmacologia , Cristalografia por Raios X , Ciclopentanos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Neuroproteção , Ligação Proteica , Domínios Proteicos , Transdução de Sinais
17.
Handb Clin Neurol ; 181: 161-172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34238455

RESUMO

Narcolepsy Type 1 (NT1) is hypothesized to be an autoimmune disease targeting the hypocretin/orexin neurons in the lateral hypothalamus. Ample genetic and epidemiologic evidence point in the direction of a pathogenesis involving the immune system. Many autoantibodies have been detected in blood samples from NT1 patients, but none in a consistent manner. Importantly, T cells directed toward hypocretin/orexin neurons have been detected in samples from NT1 patients. However, it remains to be seen if these potentially autoreactive T cells are also present in the hypothalamus and if they are pathogenic. For this reason, NT1 does still not fully meet the criteria for being classified as a genuine autoimmune disease, even though more and more results are pointing in that direction as will be described in this chapter. The autoimmune hypothesis has led to many attempts at slowing or stopping disease progression with immunomodulatory treatment, but so far the overall results have not been very encouraging. It is clear that more research into the pathogenesis of NT1 is needed to establish the precise role of the immune system in disease development.


Assuntos
Doenças Autoimunes , Narcolepsia , Autoanticorpos , Humanos , Hipotálamo , Narcolepsia/diagnóstico , Narcolepsia/terapia , Neurônios
18.
Sleep Med ; 85: 1-7, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34265481

RESUMO

OBJECTIVE: Differentiating between the central hypersomnias presents a challenge to the diagnosis of patients with hypersomnolence. Actitigraphy may support efforts to distinguish them. We aimed to evaluate: 1) the ability of actigraphy to quantify sleep continuity measures in comparison with polysomnography in patients with hypersomnolence; 2) whether actigraphy can distinguish patients with hypersomnolence with normal hypocretin-1 in cerebrospinal fluid from patients with narcolepsy type 1 and from sleep-healthy controls; and 3) the distinct activity profiles and circadian rhythms of patients with narcolepsy type 1, patients with hypersomnolence with normal hypocretin-1 in cerebrospinal fluid, and sleep-healthy controls. METHOD: Polysomnography, multiple sleep latency tests and actigraphy were conducted in 14 patients with narcolepsy type 1, 29 patients with hypersomnolence with normal hypocretin-1 in cerebrospinal fluid and 15 sleep-healthy controls. RESULTS: Actigraphy quantified several sleep continuity measures consistently with polysomnography in all the patients. Actigraphy distinguished patients with hypersomnolence with normal hypocretin-1 in cerebrospinal fluid from patients with narcolepsy type 1 and sleep-healthy controls. Patients with narcolepsy type 1 had poor sleep quality and altered circadian rest-activity rhythm compared with controls. CONCLUSION: Actigraphy is an adequate tool for establishing the amount of night sleep and supports the differential diagnosis of patients with hypersomnolence.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Narcolepsia , Actigrafia , Distúrbios do Sono por Sonolência Excessiva/diagnóstico , Humanos , Narcolepsia/diagnóstico , Orexinas , Polissonografia , Sono
19.
Brain Commun ; 3(2): fcab050, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33977264

RESUMO

The hypocretin/orexin system regulates arousal through central nervous system mechanisms and plays an important role in sleep, wakefulness and energy homeostasis. It is unclear whether hypocretin peptides are also present in blood due to difficulties in measuring reliable and reproducible levels of the peptides in blood samples. Lack of hypocretin signalling causes the sleep disorder narcolepsy type 1, and low concentration of cerebrospinal fluid hypocretin-1/orexin-A peptide is a hallmark of the disease. This measurement has high diagnostic value, but performing a lumbar puncture is not without discomfort and possible complications for the patient. A blood-based test to assess hypocretin-1 deficiency would therefore be of obvious benefit. We here demonstrate that heating plasma or serum samples to 65°C for 30 min at pH 8 significantly increases hypocretin-1 immunoreactivity enabling stable and reproducible measurement of hypocretin-1 in blood samples. Specificity of the signal was verified by high-performance liquid chromatography and by measuring blood samples from mice lacking hypocretin. Unspecific background signal in the assay was high. Using our method, we show that hypocretin-1 immunoreactivity in blood samples from narcolepsy type 1 patients does not differ from the levels detected in control samples. The data presented here suggest that hypocretin-1 is present in the blood stream in the low picograms per millilitres range and that peripheral hypocretin-1 concentrations are unchanged in narcolepsy type 1.

20.
Eur J Neurosci ; 54(2): 4445-4455, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33942407

RESUMO

γ-Aminobutyric acid (GABA) acting through heteropentameric GABAA receptors plays a pivotal role in the sleep-promoting circuitry. Whereas the role of the different GABAA receptor α-subunits in sleep regulation and in mediating the effect of benzodiazepines for treatment of insomnia is well-described, the ß-subunits are less studied. Here we report the first study characterizing sleep in mice lacking the GABAA receptor ß1 -subunit (ß1-/- mice). We show that ß1-/- mice have a distinct and abnormal sleep phenotype characterized by increased delta power in non-rapid eye movement (NREM) sleep and decreased theta activity in rapid eye movement (REM) sleep compared to ß1+/+ mice, without any change in the overall sleep-wake architecture. From GABAA receptor-specific autoradiography, it is further demonstrated that functional ß1 -subunit-containing GABAA receptors display the highest binding levels in the hippocampus and frontal cortex. In conclusion, this study suggests that the GABAA receptor ß1 -subunit does not play an important role in sleep initiation or maintenance but instead regulates the power spectrum and especially the expression of theta rhythm. This provides new knowledge on the complex role of GABAA receptor subunits in sleep regulation. In addition, ß1-/- mice could provide a useful mouse model for future studies of the physiological role of delta and theta rhythms during sleep.


Assuntos
Receptores de GABA-A , Sono REM , Animais , Eletroencefalografia , Camundongos , Camundongos Knockout , Receptores de GABA-A/genética , Sono , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...